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Abstract

A new sorting scheme based on ferrofluid hydrodynamics (ferrohydrodynamics) was used to 

separate mixtures of particles and live cells simultaneously. Two species of cells, including 

Escherichia coli and Saccharomyces cerevisiae, as well as fluorescent polystyrene microparticles 

were studied for their sorting throughput and efficiency. Ferrofluids are stable magnetic 

nanoparticles suspensions. Under external magnetic fields, magnetic buoyancy forces exerted on 

particles and cells lead to size-dependent deflections from their laminar flow paths and result in 

spatial separation. We report the design, modeling, fabrication and characterization of the sorting 

device. This scheme is simple, low-cost and label-free compared to other existing techniques.
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1. Introduction

Microfluidic particle and cell sorting plays an important role in environmental monitoring 

(Liu et al. 2004; Beyor et al. 2008; Dharmasiri et al. 2010), disease diagnostics (Nagrath et 

al. 2007; Adams et al. 2008; Hoshino et al. 2011), and therapeutics (Toner and Irimia 2005; 

Yung et al. 2009). Compared to high-specificity and label-based cell sorting techniques such 

as 0fluorescence-activated cell sorter (FACS) (Bonner et al. 1972) and magnetic-activated 
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cell sorter (MACS) (Miltenyi et al. 1990), microfluidic sortings are mostly label-free, 

relying on cells’ intrinsic properties such as size, shape, density, deformability, electric and 

magnetic properties for manipulation specificity (Pamme 2007; Tsutsui and Ho 2009; 

Gossett et al. 2010; Lenshof and Laurell 2010). When applicable, microfluidic sortings are 

favored over label-based ones, because they are inexpensive and require minimal user 

training for operation (Gossett et al. 2010). Among them, those based on channel design 

including pinched flow fractionation (Yamada et al. 2004) and deterministic lateral 

displacement (Huang et al. 2004; Davis et al. 2006) combine laminar flows with mechanical 

structures to direct particles of different sizes into separate streamlines. Continuous inertial 

separation uses balance between inertial lift force and Dean drag force in curved channels 

for size-dependent sorting of particles and cells (Di Carlo 2009). On the other hand, external 

energy inputs such as acoustic, electric and magnetic forces have also been used to 

manipulate cells in microfluidic systems. Depending on the application, their simpler 

channel geometry and faster manipulation speed may outweigh the complications of 

integrating electrodes in their designs. For example, acoustophoresis can separate particles 

and cells according to their size, density, as well as compressibility (Laurell et al. 2007; Shi 

et al. 2009; Wang and Zhe 2011). Dielectrophoresis (DEP), arising from interactions of 

cells’ dipoles and their surrounding electric fields, can realize low-cost and integrated 

devices for cell manipulation (Voldman 2006). Magnetophoresis (MAP) takes advantages of 

paramagnetic nature of red blood cells and magnetotactic bacteria and applies non-uniform 

magnetic fields to separate them from non-magnetic objects (Zborowski et al. 2003; Lee et 

al. 2004). However, most applications of magnetophoresis use functionalized magnetic 

beads for labeling (Pamme 2006; Liu et al. 2009; Gijs et al. 2010). The label-based methods 

are manually intensive and time-consuming. The magnetic moments of these beads, even 

from the same batch, can vary dramatically due to their manufacturing procedure, making 

scaling of the method scaling difficult (Hafeli et al. 1997; Miller et al. 2001; Rife et al. 2003; 

Mihajlovic et al. 2007; Shevkoplyas et al. 2007).

To address problems with label-based magnetophoresis, a label-free technique that uses 

reverse magnetophoresis to manipulate and sort cells has been developed recently based on 

ferrofluid hydrodynamics (ferrohydrodynamics) (Yellen et al. 2005; Kose et al. 2009; Zhu et 

al. 2010; Zhu et al. 2011a; Kose and Koser 2012). Ferrofluids are colloidal suspensions of 

magnetic nanoparticles, typically magnetite (Fe3O4) with approximately 10 nm diameters 

(Rosensweig 1985). They are covered by either electrostatic or steric surfactants to keep 

them from agglomeration due to van der Waals force and in suspension within a water or oil 

medium. Ferrohydrodynamics studies mechanics of ferrofluid motion under external 

magnetic fields (Rosensweig 1985; Odenbach and Editor 2002). Its applications in 

microfluidics, recently reviewed by Nguyen (Nguyen 2012), include miniaturized 

polymerase chain reaction (PCR) (Sun et al. 2007; Sun et al. 2008), traveling-wave magnetic 

field pumping (Mao and Koser 2006; Mao et al. 2011), micro-scale mixing (Mao and Koser 

2007), micropump (Hatch et al. 2001; Love et al. 2004), and droplet manipulation (Nguyen 

et al. 2006; Zhang et al. 2011b, a).

In applications of cell manipulation, the purpose of using ferrofluids is to induce effective 

magnetic dipole moments within cells. Under non-uniform magnetic fields, cells will 

experience in the weaker field direction a magnetic buoyancy force, analogous to buoyancy 
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force, as magnitude of the force is proportional to the volume of cell (Rosensweig 1985). 

Many groups have been working on adapting this principle to particles and cells sorting. For 

example, Whitesides’ group separated synthetic particles according to their densities’ 

difference using paramagnetic salt solutions (Winkleman et al. 2007; Mirica et al. 2009). 

Pamme’s group demonstrated continuous particle and cell manipulation using paramagnetic 

salt solution in microfluidic devices (Peyman et al. 2009; Rodriguez-Villarreal et al. 2011). 

Xuan’s group studied the transport of particles in both paramagnetic solutions and 

ferrofluids through a rectangular microchannel embedded with permanent magnets (Liang et 

al. 2011; Zhu et al. 2012). Park’s group recently sorted human histolytic lymphoma 

monocytes cells from red blood cells using gadolinium diethylenetriamine pentaacetic acid 

(Gd-DTPA) solution (Shen et al. 2012). However, magnetic susceptibility of paramagnetic 

salt solutions is inherently small, about 5 orders of magnitude weaker than that of a 

ferrofluid (Krebs Melissa et al. 2009), rendering slower manipulation speed and low 

throughput. As a result of the higher susceptibility of ferrofluids, Koser’s group was able to 

use an integrated microfluidic platform for sorting of microparticles and live cells within a 

citrate stabilized cobalt-ferrite ferrofluid in static flow conditions (Kose et al. 2009). The 

same device was also applied to continuous-flow frequency-adjustable particles separation 

(Kose and Koser 2012). Our group developed high-efficiency and high-throughput 

continuous-flow particle separation and focusing devices using commercial ferrofluids and 

hand-held permanent magnets (Zhu et al. 2010; Zhu et al. 2011b; Zhu et al. 2011a). 

Permanent magnet based devices are low-cost and easy to operate; their operations do not 

generate heat. Magnetic fields produced by permanent magnets are substantially larger than 

the ones by current-carrying electrodes.

High throughput, label-free and selective cell sorting realized in a single automated device 

can have profound impacts on environmental monitoring, diagnostics and therapeutics. 

Although continuous-flow ferrohydrodynamic sorting has been demonstrated with 

microparticles, it has not previously been reported with live cells (Zhu et al. 2010). The 

potential for live cell applications of continuous-flow ferrohydrodynamic sorting motivates 

the study presented here. We developed a microfluidic device that could continuously sort 

cells of different sizes based on ferrohydrodynamics, which involved manipulation of cells 

within ferrofluids via external non-uniform magnetic fields. When cell mixtures and 

ferrofluids were injected into the channel by a pressure-driven flow, deflections of cells 

from their laminar flow paths would occur because of the magnetic field gradient and 

resulting magnetic buoyance force. This deflection will lead to spatial separation of cells of 

different sizes at the end of channel.

In the following sections, we first summarize materials and methods used in this study, 

followed by results from a three-dimensional theoretical study of cells’ transport in the 

microfluidic device. Cell viabilities of Escherichia coli and Saccharomyces cerevisiae in a 

commercial ferrofluid are then discussed. Afterwards, calibration of the sorting device with 

fluorescent polystyrene microparticles is performed. Escherichia coli and Saccharomyces 

cerevisiae are sorted in the device, and cells distribution is analyzed on samples collected 

from channel outlets. In the end we will discuss outlook of ferrohydrodynamic sorting.
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2. Materials and Methods

The prototype polydimethylsiloxane (PDMS) microfluidic device was fabricated through a 

standard soft-lithography approach and attached to a flat surface of another piece of PDMS, 

as shown in Figures 1(a) and (b). A mask of the device pattern was created using AutoCAD 

2008 (Autodesk Inc., San Rafael, CA) and printed by a commercial photo-plotting company 

(CAD/Art Services Inc, Bandon, OR). Dimensions of the microfluidic channel are listed in 

Figures 1(c) and 1(d). Thickness of the device was measured to be 38 μm by a profilometer 

(Dektak 150, Veeco Instruments Inc., Chadds Ford, PA). Before attachment, PDMS surfaces 

were treated with plasma (PDC-32G plasma cleaner, Harrick Plasma, Ithaca, NY) at 11.2 Pa 

O2 partial pressure with 18 W power for 1 minute. A stack of four NdFeB permanent 

magnets was embedded into PDMS channel with their magnetization direction vertical to 

the channel during curing stage. Each magnet is 2 mm in width, 5 mm in length and 2 mm in 

thickness. The magnet stack was placed 2 mm away from the channel. Flux density at the 

center of magnets stack’s surface was measured to be 470 mT by a Gauss meter (Model 

5080, Sypris, Orlando, FL) and an axial probe with 0.381 mm diameter of circular active 

area. Before liquid injection, the device was treated with plasma for 10 minutes to render 

PDMS surfaces hydrophilic. This step ensured both cells and microparticles would not 

attach onto PDMS surfaces during sorting.

We used a commercial water-based, pH ~7 magnetite ferrofluid coated with anionic 

surfactants (EMG 408, Ferrotec Co., NH). Volume fraction of magnetite particles in this 

ferrofluid is 1.1%. Mean diameter of nanoparticles has been determined from Transmission 

Electron Microscopy (TEM) images to be ~10 nm. Initial magnetic susceptibility was 

measured to be 0.26; saturation magnetization was 60 Gauss; viscosity was 1.2×10−3 kg/m·s. 

Escherichia coli (strain MG1655) and Saccharomyces cerevisiae (Baker’s yeast), and two 

fluorescent microparticles (green 1.0 μm diameter, Thermo Fisher Scientific Inc., Waltham, 

MA, and red 7.3 μm diameter, Bangs Laboratories Inc., Fishers, IN) were used in sorting. 

Ferrofluid and particles/cells mixture injected into microchannel were maintained at tunable 

flow rates using a syringe pump (Nexus 3000, Chemyx Inc., Stafford, TX). Sorting was 

conducted on the stage of an inverted microscope (Zeiss Axio Observer, Carl Zeiss Inc., 

Germany). Micrographs of cells and particles were recorded through either a green 

fluorescent filter set (41001 FITC, Chroma Technology Corp., Rockingham, VT), or a red 

filter set (43HE, Carl Zeiss Inc., Germany), and a CCD camera (SPOT RT3, Diagnostic 

Instruments, Inc., Sterling Heights, MI). Cell samples collected from channel outlets were 

pipetted onto microscope slides and analyzed using a high-resolution CCD camera 

(AxioCam HR, Carl Zeiss Inc., Germany) for size distributions to quantitatively evaluate 

efficiency of this approach. ImageJ® software was used to count the number of cells.

Saccharomyces cerevisiae (Baker’s yeast) cells were first grown in a 10 ml test tube 

containing 2 ml of YPG medium (10 g/l yeast extract, 20 g/l glucose, 20 g/l glucose) 

overnight. They were then transferred into a 100 ml shake flask containing 20 ml of YPG 

medium. After 4 h growth at 30°C and 250 rpm, cells in the flask were stained with 

fluorophores. Escherichia coli (strain MG1655) cells were first grown in a 10 ml test tube 

containing 2 ml of Luria-Bertani (LB) medium overnight. They were then transferred into a 

100 ml shake flask containing 20 ml of LB medium (25 g/l LB). After 4 h growth at 37°C 
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and 250 rpm, cells were stained with fluorophores. Nucleic acid stains SYTO9 (green) and 

SYTO17 (red) (Molecular Probes Inc., Eugene, OR) were used in cell staining.

To study of viability of Escherichia coli and Saccharomyces cerevisiae cells exposed to 

EMG 408 ferrofluids, nominally 2×109 cells Escherichia coli and 2×107 cells 

Saccharomyces cerevisiae grown as described above were centrifuged twice at 4°C and 

washed in defined M9 medium (6.78 g/l Na2HPO4, 3.0 g/l KH2PO4, 0.5 g/l NaCl, 1.0 g/l 

NH4Cl) without carbon source. For either cell type in duplicate, the washed cell pellet from 

centrifugation was combined with either 2 ml of EMG 408 ferrofluid or 2 ml M9 medium as 

a control. After 2 hours of incubation at room temperature in these fluids, cell density was 

determined in triplicate using standard microbial serial dilutions (106 dilution for 

Escherichia coli, and 104 dilution for Saccharomyces cerevisiae), with the transferring of 

known volumes to Petri plates and counting of Colony Forming Units (CFU) after 24 hours.

3. Theory and Simulation

Previously, we reported both two-dimensional (2D) and three-dimensional (3D) analytical 

models for microfluidic transports of microparticles in ferrofluids (Zhu et al. 2011a; Zhu et 

al. 2011b). In this work, we applied the 3D analytical model to predict cells’ sorting in 

permanent magnet based device. Briefly, we obtained cells’ trajectories by first calculating 

magnetic buoyancy force on cells using a 3D analytical model of magnetic fields (Furlani 

and Sahoo 2006) and a nonlinear magnetization model of ferrofluids (Rosensweig 1985), 

and then solving governing equations of motion for cells in laminar flow condition (Brody et 

al. 1996). All relevant parameters used in our simulation are listed in Figure 1 and Materials 

and Methods section. In addition, we calculated volume of a single rod-shape Escherichia 

coli cell with short axis of 0.5 – 1 μm and long axis of 2 – 4 μm to be 2.1 – 16.7 μm3 (Kaya 

and Koser 2009), and volume of a single sphere-shape Saccharomyces cerevisiae cell with 

diameter of 7 – 9 μm to be 180 – 382 μm3 (Jorgensen et al. 2002).

Figure 2 summarizes simulated distribution of magnetic fields and magnetic buoyance 

forces in the sorting channel, as well as 3D trajectories of Escherichia coli and 

Saccharomyces cerevisiae cells. The surface plot in Figure 2(a) shows magnitude of 

magnetic fields of x-y plane at z = 0. Magnetic fields decayed rather quickly from the surface 

of the magnet and formed a gradient that resulted in magnetic buoyance force on cells in 

both x and y directions, as indicated in Figure 2(b). Consequently, cells experiencing such 

force when entering the sorting channel would decelerate in x direction and accelerate in y 

direction. Force computed on a spherical microparticle of 7.3 μm diameter, with its total 

volume (~200 μm3) close to that of a single Saccharomyces cerevisiae cell, is on the order of 

10 pN. Cell mixtures were quickly sorted by magnetic buoyancy force towards the end of 

channel, as shown in Figure 2(c) with simulated cells’ trajectories considering their natural 

size variations. All Escherichia coli cells, having much smaller size and volume compared 

to Saccharomyces cerevisiae cells, exited the channel through Outlet D, while all 

Saccharomyces cerevisiae cells migrated towards Outlet C. Figures 2(d)-(f) illustrate 

distribution of magnetic fields and forces, as well as trajectories of cells of y-z plane at x = 0; 

Figures 2(g)-(i) depict the cases of x-z plane at y = 0. We are interested in 3D trajectories of 

cells, in part due to the opaqueness of ferrofluids and difficulty in recording cells’ weak 
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fluorescence in the channel, especially the red fluorescent from Saccharomyces cerevisiae 

cells, as shown later in the results. In a concentrated ferrofluid (~10% v/v), particles and 

cells are visible only when they are very close (~1 μm) to the surface of channel (Zhu et al. 

2011b). Visibility was a less of a problem when diluted ferrofluids (~1% v/v) and thin 

microchannel were used in our device. Simulation results from Figures 2(f) and (i) indicated 

in our current setup all cells were pushed towards the channel bottom surface, which would 

enhance visibility of stained cells.

4. Results and Discussions

4.1. Cell Viability

Figure 3(a) shows the CFU in both M9 medium and EMG 408 ferrofluids after incubation. 

Counts of CFU for each case were averaged over 3 plates and plotted in Figure 3(b). We 

observed a slight increase in cell density after 2 hours of incubation in the ferrofluid 

compared to the M9 medium control for both cell types, suggesting a possibility that either 

the EMG 408 ferrofluid acted as a cell protectant or the cells continued to grow in this 

ferrofluid during incubation. Nonetheless, this ferrofluid was not detrimental to the viability 

of both cell types after 2 hours of exposure, which allowed enough time to carry out the 

sorting procedure.

4.2 Cells Sorting

We first calibrated the sorting device using a mixture of Escherichia coli cells and red 

fluorescent 7.3 μm particles, which have similar total volume of Saccharomyces cerevisiae 

cells. Washed Escherichia coli cell pellet from centrifugation as described above was 

stained with 1 μl of green nucleic acid stain SYTO9. Both particles and cells have 

concentrations of ~107 counts/ml. We introduced microparticles/cells mixture into 

microfluidic channel Inlet A at a constant flow rate of 1.5 μl/min. The mixture was 

hydrodynamically focused into a narrow stream by sheath flow from Inlet B at a flow rate of 

6 μl/min. The observation window was located right before the channel outlets, as indicated 

in Figure 1(c). When magnetic fields were off, particles and cells were observed in 

fluorescent mode flowing together near sidewall of the channel and exiting through Outlet 

D, as shown in composite micrograph of Figure 4(a). When magnetic fields were on, 

magnetic buoyancy forces deflected particles from their laminar flow paths towards Outlet 

C, as shown in Figure 2(b). On the other hand, forces on smaller Escherichia coli cells were 

inadequate to deflect them to Outlet C; therefore they exited the channel through Outlet D 

still, as shown in Figure 2(c). This resulted in spatial separation of particles/cells mixture at 

the end of channel. We were able to separate ~106 particles from ~106 cells per hour with 

1.5 μl/min flow rate. Simply increasing the flow rate can further increase sorting throughput. 

Current microfluidic sorting schemes use flow rates ranging between ~10 μl/min and ~1 

ml/min (Gossett et al. 2010). With such flow rates and 107 – 108 cells/ml concentration, 

maximum sorting throughput of our device in theory can go up to 109 cells per hour.

Secondly, we calibrated the device using a mixture of Saccharomyces cerevisiae cells and 

green fluorescent 1.0 μm particles, which have similar volume as Escherichia coli cells. 

Saccharomyces cerevisiae were stained with red nucleic acid stain SYTO17. Both particles 
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and cells again have concentrations of ~107 counts/ml. Due to weak red fluorescence from 

SYTO17 in our setup, we chose to use a combination of bright-field and fluorescent modes 

microscopy to record the sorting process. Figure 4(d) shows merged composite micrograph 

of green fluorescent 1.0 μm particles and bright-field particles/Saccharomyces cerevisiae 

mixture, both of which exited channel through Outlet D when magnetic fields were off. 

Sorting of this mixture was achieved as soon as magnetic fields were on, as depicted in 

Figures 4(e) and 4(f). Cells distribution analysis presented in the following section 

confirmed a close to 100% sorting efficiency. Sorting throughput was ~106 cells per hour. 

Here we demonstrated that combination of bright-field and fluorescent microscopy can 

successfully circumvent recording issues originating from opaqueness of ferrofluids and 

weak fluorescence from stained live cells.

Finally, sorting of Escherichia coli and Saccharomyces cerevisiae cells were carried out in 

the same device at the same time. Escherichia coli cells were stained with green 

fluorescence while Saccharomyces cerevisiae were stained with red fluorescence. Both 

types of cells were adjusted to ~107 cells/ml concentration in initial mixture. It is clearly 

shown in Figure 4(g) that all cells exited from the channel through Outlet D when there was 

no magnetic field. Both bright-field and fluorescent mode micrographs of cells were 

recorded and merged to form Figure 4(g). Saccharomyces cerevisiae cells were successfully 

sorted from the initial cell mixture with the application of magnetic fields, as demonstrated 

in Figures 4(h) and 4(i).

4.3 Cell Sorting Efficiency

In order to precisely evaluate sorting efficiency, we collected samples from both Outlets C 

and D and analyzed them for size distributions off chip. We stained cells in distinctive 

fluorescence and counted them using ImageJ® software. Specifically, in first calibration, 

Escherichia coli cells were green and 7.3 μm particles were red; in second calibration, 

Saccharomyces cerevisiae cells were red and 1.0 μm particles were green; in cells sorting, 

Saccharomyces cerevisiae cells were red and Escherichia coli cells were green. Fluorescent 

mode was chosen for distribution analysis to avoid miscounting of cell types in bright-field 

micrographs. A magnetic field was applied to push all particles and cells onto a surface of 

glass slide to increase visibility. We define remaining efficiency as ratio of number of 

particles or cells exiting from Outlet D after magnetic field application to their initial 

number before magnetic field application. Similarly, sorting efficiency is defined as the ratio 

of number of particles or cells exiting from Outlet C after magnetic field application to their 

initial number before magnetic field application. Figure 5(a) shows a representative 

composite micrograph of Escherichia coli cells and 7.3 μm particles collected from Inlet A 

before sorting. 100% of 7.3 μm particles migrated to Outlet C and 98.8% Escherichia coli 

cells remained in Outlet D, as depicted in Figures 5(b) and 5(c). Remaining and separation 

efficiencies for both particles are plotted in Figure 5(d). Figures 3(e) – 3(h) and Figures 3(i) 

– 3(l) show micrographs and efficiencies for Saccharomyces cerevisiae cells/1.0 μm 

particles mixture sorting and Saccharomyces cerevisiae cells/Escherichia coli cells mixture 

sorting, respectively. Both cases have 100% efficiencies. It should be noted that samples 

collected from Outlets C and D were greatly diluted by ferrofluid sheath flow from Inlet B, 

rendering much lower particles and cells concentration for distribution analysis. A possible 
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solution to this problem is integration of cell focusing (Zhu et al. 2011a) and sorting steps on 

one chip.

4.4 Outlooks of Ferrohydrodynamic Sorting

Ferrohydrodynamic cell sorting offers the potential for high throughput (~107 cells/hour in 

this study and ~109 cells/hour in theory) and high separation efficiency (~100%) that are 

comparable to existing microfluidic sorting techniques but without the use of labels. The 

associated device is inexpensive and simple, only requiring a channel and hand-held 

permanent magnets. Sorting specificity of this approach is not limited to size difference 

only; it is also sensitive to cells’ shape and deformability (Kose et al. 2009). In adapting it to 

miniaturized flow cytometry, ferrohydrodynamic manipulation can first focus cells into 

single cell streams before sorting, eliminating needs for excessive sheath flow and 

preventing sample dilution (Zhu et al. 2011a). Compared to paramagnetic solution based 

sorting, ferrofluid offers much higher magnetic susceptibility, eliminating needs for either 

microfabricated ferromagnetic structures to enhance field gradient or hypertonic 

concentrations of paramagnetic salts that are not biocompatible for live cell manipulation.

On the other hand, using water-based ferrofluids for cell manipulation is a work in progress. 

Diagnostic and research applications directed towards simply purifying or isolating cells of 

interest from complex mixtures such as blood and exfoliated cytology specimens are 

exciting. For instance, blood cells obscure the detection of the larger but rare abnormal 

cervical cells from Pap test specimens and metastatic epithelial tumor cells circulating in 

blood (Moriarty et al. 2009; Yu et al. 2011). Misinterpreted cervical cytology ranks third 

among causes of medical negligence claims against pathologist (Frable 2007). A simple, 

low-cost tumor cell enrichment platform would benefit cancer screening. However, two 

issues, cell visibility and biocompatibility of mammalian cells in ferrofluids, limit 

applications of ferrohydrodynamic manipulation. Ferrofluids are opaque due to light 

diffraction from their high concentration of magnetic nanoparticles. Fluorescent cells need 

to be close to channel surface for microscopic recording. In order to address this issue, 

ferrofluids with low solid content, as well as shallow microfluidic channel, are favored for 

cell manipulation. In addition, magnetic fields can be used to push cells onto channel 

surface, increasing visibility of cells in fluorescent mode. In this study, we used a 

combination of both bright-field and fluorescent modes microscopy to circumvent the 

opaqueness issue. Cells were readily visible in a shallow channel in bright-field 

micrographs. Another potential issue is biocompatibility of ferrofluids. Our next step is to 

extend this methodology to mammalian cells, particularly human specimens such as blood 

and other bodily fluids, exfoliated musical cells, and tumor aspirates. The requirements of 

mammalian cells may differ from Escherichia coli and Saccharomyces cerevisiae. For cell 

manipulation, materials, pH value, and surfactants of ferrofluids need to be rendered 

biocompatible, at the same time the overall colloidal system of ferrofluids must be 

maintained. Typically, nanoparticles within ferrofluids for cell applications are made of 

magnetite (Pankhurst et al. 2003). pH value of ferrofluids needs to be compatible with cell 

culture and maintained at 7.4. Salt concentration, tonicity, and surfactant must be carefully 

chosen close to physiological conditions to reduce cell death. Although these are stringent 

requirements, progress has been made towards synthesizing biocompatible ferrofluids. For 
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example, Koser’s group used citrate to stabilize cobalt-ferrite nanoparticles for live red 

blood cell and Escherichia coli cell sorting (Kose et al. 2009). Yellen’s group used Bovine 

Serum Albumin (BSA) to stablize magnetite nanoparticles for human umbilical vein 

endothelial cells manipulation (Krebs Melissa et al. 2009). Viability tests from both studies 

have shown cells were able to retain their viability for up to several hours in ferrofluids. In 

our study, a commercially available pH ~7 magnetite ferrofluid was able to sustain viability 

of both Escherichia coli and Saccharomyces cerevisiae cells for at least 2 hours.

5. Conclusion

In conclusion, we have developed a label-free and continuous-flow ferrohydrodynamic cell 

sorting device and applied it in separating Escherichia coli and Saccharomyces cerevisiae 

cells. A commercial magnetite ferrofluid was used to separate particle and cell mixtures. 

Construction of our device is simple and low-cost; we choose to use permanent magnets 

instead of integrated electrodes to eliminate complex microfabrication process and auxiliary 

power supply. Current sorting throughput is 107 cells/hour, and sorting efficiency is close to 

100%. We envision this device can achieve up to two orders higher throughput while still 

maintaining current sorting efficiency. This device can also be used for mammalian cells 

sorting and enrichment with a biocompatible ferrofluid.
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Figure 1. 
(a) Schematic representation of the sorting device with permanent magnets and a 

microfluidic channel. (b) An image of protype device. Scale bar is 10 mm. (c) Topview of 

the device and relevant dimensions. Red arrows indicate direction of magnets’ 

magnetization. (d) Cross-section of the device.
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Figure 2. 
Analytical three-dimensional simulation of magnetic field and force distributions in 

microfluidic channel, and trajectories of cells. Simulation parameters match exact 

experimental conditions. (a)-(c) x-y plane (z = 0), (d)-(f) y-z plane (x = 0), (g)-(i) x-z plane (y 

= 0) of magnetic field strength (surface plot) (a, d, g), magnetic force (surface plot: force 

magnitude; arrow plot: force direction) (b, e, h), and particles’ trajectories (c, f, i). Dots 

indicate starting points, while crosses indicate ending points of cells’ trajectories. E.coli cell 

has volume range of 2.1 – 16.7 μm3 and Yeast cell has volume range of 180 – 382 μm3, 

resulting in a distribution of trajectories for each type of cell. Blue triangle in (c) indicates 

boundary between Outlets C and D.
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Figure 3. 
Cell viability test of Escherichia coli and Saccharomyces cerevisiae. (a) Top and bottom 

photos show Escherichia coli and Yeast colonies formed in M9 medium and EMG 408 

ferrofluids after 106 dilution from initial growth, respectively. (b) Colony Forming Unites 

(CFU) count of Escherichia coli and Saccharomyces cerevisiae using initial growth cell 

concentration.

Zhu et al. Page 15

Microfluid Nanofluidics. Author manuscript; available in PMC 2015 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Experimental composite micrographs of sorting process. (a), (d), (g) were particles/cells 

mixture ((a): Escherichia coli (green) and 7.3 μm particles (red); (d): Saccharomyces 

cerevisiae (red and bright-field) and 1.0 μm particles (green); (g): Escherichia coli (green) 

and Saccharomyces cerevisiae (red and bright-field) before magnetic fields were applied. 

(b), (e), (h) were micrographs of Outlet C after magnetic fields were applied, and (c), (f), (i) 

were micrographs of Outlet D. Blue triangles indicate boundary between Outlets C and D. 

Scale bars represent 200 μm.

Zhu et al. Page 16

Microfluid Nanofluidics. Author manuscript; available in PMC 2015 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Experimental composite micrographs of size distribution analysis, including micrographs of 

particles/cells mixture collected before sorting at Inlet A and after separation at Outlets C 

and D, and remaining and separation efficiencies. (a) – (d) were for Escherichia coli and 7.3 

μm particles mixture; (e) – (h) were for Saccharomyces cerevisiae and 1.0 μm particles 

mixture; (i) – (l) were for Escherichia coli and Saccharomyces cerevisiae mixture. Blue bar 

with normal number on top shows remaining efficiency, while red bar with italic number on 

top shows separation efficiency. Scale bars represent 200 μm.
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